2 resultados para biological model

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Globally, agriculture is being intensified with mechanization and increased use of synthetic fertilizers and pesticides. There has been a scaling up of production to satisfy the demands of supermarket distribution. Problems associated with intensification of production, trade globalisation and a larger market demand for greater volumes of fresh produce, include consumers' concern about pesticide residues and leaching of nutrients and pesticides into the environment, as well as increases in the transmission of human food-poisoning pathogens on raw vegetables and in fruit juices. The first part of this research was concerned with the evaluation of a biological control strategy for soil-borne pathogens, these are difficult to eliminate and the chemicals of which the most effective fumigants e.g. methyl bromide, are being withdrawn form use. Chitin-containing crustaceans shellfish waste was investigated as a selective growth substrate amendment in the field, in glasshouse and in storage trials against Sclerotinia disease of Helianthus tuberosus, Phytophthora fragariae disease of Fragaria vesca and Fusarium disease of Dianthus. Results showed that addition to shellfish waste stimulated substrate microbial populations and lytic activity and induced plant defense proteins, namely chitinases and cellulases. Protective effects were seen in all crop models but the results indicate that further trials are required to confirm long-term efficacy. The second part of the research investigated the persistence of enteric bacteria in raw salad vegetables using model food poisoning isolates. In clinical investigations plants are sampled for bacterial contamination but no attempt is made to differentiate between epiphytes and endophytes. Results here indicate that the mode isolates persist endophytically thereby escaping conventional chlorine washes and they may also induce host defenses, which results in their suppression and in negative results in conventional plate count screening. Finally a discussion of criteria that should be considered for a HACCP plan for safe raw salad vegetable production is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Can my immediate physical environment affect how I feel? The instinctive answer to this question must be a resounding “yes”. What might seem a throwaway remark is increasingly borne out by research in environmental and behavioural psychology, and in the more recent discipline of Evidence-Based Design. Research outcomes are beginning to converge with findings in neuroscience and neurophysiology, as we discover more about how the human brain and body functions, and reacts to environmental stimuli. What we see, hear, touch, and sense affects each of us psychologically and, by extension, physically, on a continual basis. The physical characteristics of our daily environment thus have the capacity to profoundly affect all aspects of our functioning, from biological systems to cognitive ability. This has long been understood on an intuitive basis, and utilised on a more conscious basis by architects and other designers. Recent research in evidence-based design, coupled with advances in neurophysiology, confirm what have been previously held as commonalities, but also illuminate an almost frightening potential to do enormous good, or alternatively, terrible harm, by virtue of how we make our everyday surroundings. The thesis adopts a design methodology in its approach to exploring the potential use of wireless sensor networks in environments for elderly people. Vitruvian principles of “commodity, firmness and delight” inform the research process and become embedded in the final design proposals and research conclusions. The issue of person-environment fit becomes a key principle in describing a model of continuously-evolving responsive architecture which makes the individual user its focus, with the intention of promoting wellbeing. The key research questions are: What are the key system characteristics of an adaptive therapeutic single-room environment? How can embedded technologies be utilised to maximise the adaptive and therapeutic aspects of the personal life-space of an elderly person with dementia?.